Skip to main content

Aston University - Aston Journey - Shop


Understanding Statistics in Psychology with SPSS 8th edition

Paperback by Howitt, Dennis; Cramer, Duncan

Understanding Statistics in Psychology with SPSS

£54.99

eBook available - save £17.00
ISBN:
9781292282305
Publication Date:
19 Mar 2020
Edition/language:
8th edition / English
Publisher:
Pearson Education Limited
Pages:
752 pages
Format:
Paperback
For delivery:
New product available - 9781292465180
Understanding Statistics in Psychology with SPSS

Description

Develop confidence conducting statistical analysis with this trusted text Understanding Statistics in Psychology with SPSS, eighth edition, by Dennis Howitt and Duncan Cramer is the comprehensive guide that helps you conduct statistical analyses using SPSS with confidence. Combining coverage of statistics with full guidance on how to use SPSS to analyse data, the book's straightforward content is neatly organised into short, accessible chapters that can be used in class or for independent study. Clear diagrams and full colour screenshots from SPSS make the text suitable for beginners, while the broad coverage of topics helps you progress to more advanced techniques. This edition provides an engaging learning aid packed with examples from real psychological studies that illustrate how statistical techniques are used in practice. Learning features including key concept boxes, 'focus' sections and 'explaining statistics' sections ensure solid understanding of underpinning principles. This trusted book is the ideal companion for undergraduate students in psychology. Key features Combines coverage of statistics with full guidance on how to use SPSS to analyse data. Suitable for use with all versions of SPSS. Examples from a wide range of real psychological studies illustrate how statistical techniques are used in practice. Includes clear and detailed guidance on choosing tests, interpreting findings and reporting and writing up research. Student-focused pedagogical approach including: Key conceptboxes detailing important terms. Focus onsections exploring complex topics in greater depth. Explaining statisticssections clarify important statistical concepts. Dennis Howitt and Duncan Cramer are with Loughborough University.

Contents

Chapter 1 Why statistics? Chapter 2 Some basics: Variability and measurement Chapter 3 Describing variables: Tables and diagrams Chapter 4 Describing variables numerically: Averages, variation and spread Chapter 5 Shapes of distributions of scores Chapter 6 Standard deviation and z-scores: Standard unit of measurement in statistics Chapter 7 Relationships between two or more variables: Diagrams and tables Chapter 8 Correlation coefficients: Pearson's correlation and Spearman's rho Chapter 9 Regression: Prediction with precision Chapter 10 Samples from populations Chapter 11 Statistical significance for the correlation coefficient: A practical introduction to statistical inference Chapter 12 Standard error: Standard deviation of the means of samples Chapter 13 Related t-test: Comparing two samples of related/correlated/paired scores Chapter 14 Unrelated t-test: Comparing two samples of unrelated/uncorrelated/ independent scores Chapter 15 What you need to write about your statistical analysis Chapter 16 Confidence intervals Chapter 17 Effect size in statistical analysis: Do my findings matter? Chapter 18 Chi-square: Differences between samples of frequency data Chapter 19 Probability Chapter 20 One-tailed versus two-tailed significance testing Chapter 21 Ranking tests: Nonparametric statistics Chapter 22 Variance ratio test: F-ratio to compare two variances Chapter 23 Analysis of variance (ANOVA): One-way unrelated or uncorrelated ANOVA Chapter 24 ANOVA for correlated scores or repeated measures Chapter 25 Two-way or factorial ANOVA for unrelated/uncorrelated scores: Two studies for the price of one? Chapter 26 Multiple comparisons with in ANOVA: A priori and post hoc tests Chapter 27 Mixed-design ANOVA: Related and unrelated variables together Chapter 28 Analysis of covariance (ANCOVA): Controlling for additional variables Chapter 29 Multivariate analysis of variance (MANOVA) Chapter 30 Discriminant (function) analysis - especially in MANOVA Chapter 31 Statistics and analysis of experiments Chapter 32 Partial correlation: Spurious correlation, third or confounding variables, suppressor variables Chapter 33 Factor analysis: Simplifying complex data Chapter 34 Multiple regression and multiple correlation Chapter 35 Path analysis Chapter 36 Meta-analysis: Combining and exploring statistical findings from previous research Chapter 37 Reliability in scales and measurement: Consistency and agreement Chapter 38 Influence of moderator variables on relationships between two variables Chapter 39 Statistical power analysis: Getting the sample size right Chapter 40 Log-linear methods: Analysis of complex contingency tables Chapter 41 Multinomial logistic regression: Distinguishing between several different categories or groups Chapter 42 Binomial logistic regression Chapter 43 Data mining and big data

Back

Aston University - Aston Journey